Beam-orientation customization using an artificial neural network.
نویسندگان
چکیده
A methodology for the constrained customization of coplanar beam orientations in radiotherapy treatment planning using an artificial neural network (ANN) has been developed. The geometry of the patients, with cancer of the prostate, was modelled by reducing the external contour, planning target volume (PTV) and organs at risk (OARs) to a set of cuboids. The coordinates and size of the cuboids were given to the ANN as inputs. A previously developed beam-orientation constrained-customization (BOCC) scheme employing a conventional computer algorithm was used to determine the customized beam orientations in a training set containing 45 patient datasets. Twelve patient datasets not involved in the training of the artificial neural network were used to test whether the ANN was able to map the inputs to customized beam orientations. Improvements from the customized beam orientations were compared with standard treatment plans with fixed gantry angles and plans produced from the BOCC scheme. The ANN produced customized beam orientations within 5 degrees of the BOCC scheme in 62.5% of cases. The average difference in the beam orientations produced by the ANN and the BOCC scheme was 7.7 degrees (+/-1.7, 1 SD). Compared with the standard treatment plans, the BOCC scheme produced plans with an increase in the average tumour control probability (TCP) of 5.7% (+/-1.4, 1 SD) whilst the ANN generated plans increased the average TCP by 3.9% (+/-1.3, 1 SD). Both figures refer to the TCP at a fixed rectal normal tissue complication probability (NTCP) of 1%. In conclusion, even using a very simple model for the geometry of the patient, an ANN was able to produce beam orientations that were similar to those produced by a conventional computer algorithm.
منابع مشابه
Experimental and finite-element free vibration analysis and artificial neural network based on multi-crack diagnosis of non-uniform cross-section beam
Crack identification is a very important issue in mechanical systems, because it is a damage that if develops may cause catastrophic failure. In the first part of this research, modal analysis of a multi-cracked variable cross-section beam is done using finite element method. Then, the obtained results are validated usingthe results of experimental modal analysis tests. In the next part, a nove...
متن کاملDouble Cracks Identification in Functionally Graded Beams Using Artificial Neural Network
This study presents a new procedure based on Artificial Neural Network (ANN) for identification of double cracks in Functionally Graded Beams (FGBs). A cantilever beam is modeled using Finite Element Method (FEM) for analyzing a double-cracked FGB and evaluation of its first four natural frequencies for different cracks depths and locations. The obtained FEM results are verified against availab...
متن کاملAssessment of Different Training Methods in an Artificial Neural Network to Calculate 2D Dose Distribution in Radiotherapy
Introduction: Treatment planning is the most important part of treatment. One of the important entries into treatment planning systems is the beam dose distribution data which maybe typically measured or calculated in a long time. This study aimed at shortening the time of dose calculations using artificial neural network (ANN) and finding the best method of training t...
متن کاملPREDICTION OF BIAXIAL BENDING BEHAVIOR OF STEEL-CONCRETE COMPOSITE BEAM-COLUMNS BY ARTIFICIAL NEURAL NETWORK
In this study, the complex behavior of steel encased reinforced concrete (SRC) composite beam–columns in biaxial bending is predicted by multilayer perceptron neural network. For this purpose, the previously proposed nonlinear analysis model, mixed beam-column formulation, is verified with biaxial bending test results. Then a large set of benchmark frames is provided and P-Mx-My triaxial ...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 44 9 شماره
صفحات -
تاریخ انتشار 1999